Estimation and Asymptotic Inference in the First Order AR-ARCH Model
نویسندگان
چکیده
This paper studies asymptotic properties of the quasi-maximum likelihood estimator (QMLE) and of a suggested modified version for the parameters in the first order autoregressive (AR) model with autoregressive conditional heteroskedastic (ARCH) errors. The modified QMLE (MQMLE) is based on truncation of the likelihood function and is related to the recent so-called self-weighted QMLE in Ling (2006). We show that the MQMLE is asymptotically normal irrespectively of the existence of finite moments, as geometric ergodicity alone suffice. Moreover, our included simulations show that the MQMLE is remarkably well-behaved in small samples. On the other hand the ordinary QMLE, as is well-known, requires finite fourth order moments for asymptotic normality. But based on our considerations and simulations, we conjecture that in fact only geometric ergodicity and finite second order moments are needed for the QMLE to be asymptotically normal. Finally, geometric ergodicity for AR-ARCH processes is shown to hold under mild and classic conditions on the AR and ARCH processes.
منابع مشابه
Estimation and Asymptotic Inference in the AR-ARCH Model
Abstract: This paper studies asymptotic properties of the quasi-maximum likelihood estimator (QMLE) and of a suggested modified version for the parameters in the autoregressive (AR) model with autoregressive conditional heteroskedastic (ARCH) errors. The modified QMLE (MQMLE) is based on truncation of the likelihood function and is related to the recent so-called self-weighted QMLE in Ling (200...
متن کاملTheis Lange Asymptotic Theory in Financial Time Series Models with Conditional Heteroscedasticity
The present thesis deals with asymptotic analysis of financial time series models with conditional heteroscedasticity. It is well-established within financial econometrics that most financial time series data exhibit time varying conditional volatility, as well as other types of non-linearities. Reflecting this, all four essays of this thesis consider models allowing for time varying conditiona...
متن کاملAsymptotic Efficiencies of the MLE Based on Bivariate Record Values from Bivariate Normal Distribution
Abstract. Maximum likelihood (ML) estimation based on bivariate record data is considered as the general inference problem. Assume that the process of observing k records is repeated m times, independently. The asymptotic properties including consistency and asymptotic normality of the Maximum Likelihood (ML) estimates of parameters of the underlying distribution is then established, when m is ...
متن کاملConditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model
‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...
متن کاملInference for Tail Index of GARCH(1,1) Model and AR(1) Model with ARCH(1) Errors
For a GARCH(1,1) sequence or an AR(1) model with ARCH(1) errors, it is known that the observations have a heavy tail and the tail index is determined by an estimating equation. Therefore, one can estimate the tail index by solving the estimating equation with unknown parameters replaced by quasi maximum likelihood estimation (QMLE), and profile empirical likelihood method can be employed to eff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006